LABORATORI NAZIONALI DEL GRAN SASSO

SEMINAR ANNOUNCEMENT

Yuri Suvorov University of California

Measurement of geo-neutrinos with Borexino during 1353 days of live time

We present a measurement of the geo—neutrino signal obtained with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. With a fiducial exposure of $(3.69 \pm 0.16) \times 1031$ proton \times year after all selection cuts and background subtraction, we detected (14.3 ± 4.4) geo—neutrino events with a fixed chondritic mass Th/U ratio of 3.9. This corresponds to a geo—neutrino signal Sgeo = (38.8 ± 12.0) TNU. From the InL profile, the null geo—neutrino measurement has a probability of 6×10^{-6} . If the U and Th components are fitted individually, the relative signals are $STh = (10.6 \pm 12.7)$ TNU and $SU = (26.5 \pm 19.5)$ TNU. Borexino data alone are compatible with a mantle geo—neutrino signal of (15.4 ± 12.3) TNU, while a combined analysis with the Kamland data allows to extract a mantle signal of (14.1 ± 8.1) TNU. Borexino data reject the hypothesis of an active geo—reactor in the Earth's core with a power above 4.5 TW at 95% C.L. Our measurement of a reactor anti—neutrino signal $S = 84.5^{+19.3}$ - $_{18.9}$ TNU is in agreement with expectations in the presence of neutrino oscillations.

MARCH 13, 2013 – 2:30 PM LNGS - "B. PONTECORVO" ROOM